If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x-54=0
a = 4; b = 16; c = -54;
Δ = b2-4ac
Δ = 162-4·4·(-54)
Δ = 1120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1120}=\sqrt{16*70}=\sqrt{16}*\sqrt{70}=4\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{70}}{2*4}=\frac{-16-4\sqrt{70}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{70}}{2*4}=\frac{-16+4\sqrt{70}}{8} $
| 121/4c=9 | | X+46=2x-14 | | -8(-5+2a)=152 | | -9(1-5c=-(-9c+9) | | 1-6v-8=11 | | 9w=−63 | | 9f+16=76 | | 3k*2-576=0 | | -y-6=2y+7 | | 25+4•x=29 | | 3x-70=x+50 | | 5b-8=3+7b | | 4x-x=14.8 | | 10x+15=6x+31 | | 6x+56=8x+22 | | -x-14=-17 | | 4(2x-1)+3x+11=-2 | | 4x+15=-x-3 | | -4(-4+4×)=-35+x | | (k-8)^2=16 | | 13x-10=-34 | | z/6=77 | | z/6+15=92 | | −5p+35=10 | | 1/4t+4=3/4(t=8) | | X+(x+4)+(x+2)=66 | | 25+9=c^2 | | C=5h-4 | | n/2+n/3=5 | | 8x+8=43+3 | | 9=17.5/x | | -3(6n+4)=96 |